首页> 外文OA文献 >Kinetically Controlled Nanostructure Formation in Self-Assembled Globular Protein–Polymer Diblock Copolymers
【2h】

Kinetically Controlled Nanostructure Formation in Self-Assembled Globular Protein–Polymer Diblock Copolymers

机译:自组装球状蛋白质 - 聚合物二嵌段共聚物中动力学控制的纳米结构形成

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Aqueous processing of globular protein–polymer diblock copolymers into solid-state materials and subsequent solvent annealing enables kinetic and thermodynamic control of nanostructure formation to produce block copolymer morphologies that maintain a high degree of protein fold and function. When model diblock copolymers composed of mCherry-b-poly(N-isopropylacrylamide) are used, orthogonal control over solubility of the protein block through changes in pH and the polymer block through changes in temperature is demonstrated during casting and solvent annealing. Hexagonal cylinders, perforated lamellae, lamellae, or hexagonal and disordered micellar phases are observed, depending on the coil fraction of the block copolymer and the kinetic pathway used for self-assembly. Good solvents for the polymer block produce ordered structures reminiscent of coil–coil diblock copolymers, while an unfavorable solvent results in kinetically trapped micellar structures. Decreasing solvent quality for the protein improves long-range ordering, suggesting that the strength of protein interactions influences nanostructure formation. Subsequent solvent annealing results in evolution of the nanostructures, with the best ordering and the highest protein function observed when annealing in a good solvent for both blocks. While protein secondary structure was found to be almost entirely preserved for all processing pathways, UV–vis spectroscopy of solid-state films indicates that using a good solvent for the protein block enables up to 70% of the protein to be retained in its functional form.
机译:将球状蛋白质-聚合物二嵌段共聚物水处理成固态材料,然后进行溶剂退火,可以动力学和热力学控制纳米结构的形成,以产生嵌段共聚物形态,从而保持高度的蛋白质折叠和功能。当使用由mCherry-b-聚(N-异丙基丙烯酰胺)组成的模型二嵌段共聚物时,在浇铸和溶剂退火过程中,通过pH值的变化对蛋白质嵌段的溶解度进行了正交控制,而通过温度的变化则对聚合物嵌段进行了正交控制。观察到六边形圆柱体,穿孔薄片,薄片或六角形和无序的胶束相,这取决于嵌段共聚物的卷曲分数和用于自组装的动力学途径。聚合物嵌段的良好溶剂会产生有序的结构,让人联想到线圈-线圈二嵌段共聚物,而不良的溶剂会导致动力学捕获的胶束结构。降低蛋白质的溶剂质量会改善长程有序性,表明蛋白质相互作用的强度会影响纳米结构的形成。随后的溶剂退火导致纳米结构的演变,当在良好的溶剂中对两个嵌段进行退火时,观察到最佳的有序性和最高的蛋白质功能。虽然发现蛋白质的二级结构几乎可以在所有加工路径中完全保留,但是固态膜的紫外可见光谱表明,使用良好的蛋白质块溶剂可以将多达70%的蛋白质保留在其功能形式中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号